Step of Proof: linorder_le_neg
12,41
postcript
pdf
Inference at
*
2
I
of proof for Lemma
linorder
le
neg
:
1.
T
: Type
2.
R
:
T
T
3. Linorder(
T
;
x
,
y
.
R
(
x
,
y
))
4.
a
:
T
5.
b
:
T
6. strict_part(
x
,
y
.
R
(
x
,
y
);
b
;
a
)
R
(
a
,
b
)
latex
by ((((D 6)
CollapseTHEN (ProveProp))
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat
C
1:n),(first_nat 1000:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
P
&
Q
,
strict_part(
x
,
y
.
R
(
x
;
y
);
a
;
b
)
origin